GPO PRICE \$	320
CFSTI PRICE(S) \$	Copy RM L58Al5
Microfiche (MF)	DECLASSIFIED PER MEMO-DESIMONE TO LEBOW DATED 8/4/66

RESEARCH MEMORANDUM

Declassified by authority of NASA

TRANSONIC FLUTTER INVESTIGATION OF MODELS OF THE

SWEPTBACK WING OF A FIGHTER AIRPLANE

By Samuel L. Smith III and Robert W. Boswinkle, Jr.

Langley Aeronautical Laboratory Langley Field, Va.

602	N66 37116	
9	(ACCESSION NUMBER)	(THRU)
FOR	3/	
Ĭ	(PAGES)	(CODE)
FACIL		
	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

April 15, 1958

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

TRANSONIC FLUTTER INVESTIGATION OF MODELS OF THE

SWEPTBACK WING OF A FIGHTER AIRPLANE

By Samuel L. Smith III and Robert W. Boswinkle, Jr.

SUMMARY

A transonic flutter investigation has been made of models of the wing of a current fighter airplane. The models were dynamically and elastically scaled in accordance with criteria which include a flutter safety margin. The wings had an aspect ratio of 3.42 and were swept back 41.10 along the leading edge and 19.30 along the outer part of the trailing edge. A large trailing-edge fillet extended out to 50 percent of the semispan. The investigation was made in the Langley transonic blowdown tunnel and covered a Mach number range from 0.75 to 1.32.

The flutter boundary was located at simulated altitudes below sea level, the models being flutter free at altitudes above sea level. However, a region in which the models exhibited large responses to the turbulence of the tunnel stream extended to altitudes above sea level at supersonic Mach numbers. The significance with regard to the airplane of the large responses of the models is not known. The flutter boundary shifted to higher altitudes but remained below sea level with the addition of 15-percent-chord leading-edge extensions over the outer 35 percent of the semispan.

INTRODUCTION

The flutter characteristics of the wing of a current fighter airplane have been under study. The wing is swept back 41.1° along the leading edge and 19.3° along the outer part of the trailing edge. A large trailing-edge fillet extends out to 50 percent of the semispan. Calculations indicated that flutter would result at transonic speeds at sea level if the stiffness were reduced only slightly. Experimental data on similar wings (refs. 1 to 4) indicated that possibly a sufficient

stiffness margin existed; however, it was felt that the wing in question was sufficiently different from those of the references to warrant a separate experimental study.

The investigation was made in the Langley transonic blowdown tunnel with models which were dynamically and elastically scaled in accordance with criteria which include a flutter safety margin. The wing spar was cantilever-mounted inboard of the wing root and the tests were made at Mach numbers from 0.75 to 1.32 and at simulated altitudes extending to below sea level. The effect of installing a 15-percent-chord leading-edge extension over the outer 35 percent of the semispan was also investigated.

SYMBOLS

- b typical wing semichord, ft
- c local streamwise chord, ft
- m mass scale factor, $\frac{\text{Typical model mass}}{\text{Corresponding airplane mass}}$
- m' mass of exposed panel, slugs
- M Mach number
- q dynamic pressure, lb/sq ft
- s value of y at wing tip
- t time scale factor,

 Time required for tunnel airstream to move 1 model chord length

 Time required for airplane to move 1 airplane chord length
- T static temperature, OR

$$v = \frac{\pi}{4} \int_0^s e^2 dy$$

V velocity, ft/sec

NACA RM L58A15

 \overline{V} reduced velocity based on a representative natural frequency, $V/b\omega_i$

y distance from wing root measured perpendicular to wing root, ft

X,Y streamwise and spanwise coordinates, respectively, defined in figure 4

η stiffness reduction factor used to provide margin of safety in application of model flutter-test results to the airplane

μ mass ratio. m'/ov

ρ static air density, slugs/cu ft

ω, representative natural frequency, radians/sec

Subscripts:

A airplane

M model

MODELS

Geometry

The models were 3.125-percent-size versions of the wings of a current fighter airplane. The wing models had an aspect ratio of 3.42 and were swept back 41.1° along the leading edge and 19.3° along the outer part of the trailing edge. A large fillet at the trailing edge extended out to 50 percent of the semispan. A sketch of the model is given in figure 1 and some of the more important geometric properties are listed in table I. The fact that the plan-form aspect ratio is twice the exposed-panel aspect ratio (table I) is coincidental.

Because of damage to the models at flutter, six models were required in the investigation. Three models (designated wings 1 to 3) were without leading-edge chord-extensions and were intended to be identical. The other three models (designated wings 4 to 6) had leading-edge chord-extensions and were intended to be identical. In addition, the only intended differences between the two sets of models were differences caused by the addition of the leading-edge chord-extensions. Small differences between models 1 to 3 and also between models 4 to 6

did exist, as evidenced by the measured natural vibration frequencies and node lines (presented in the section entitled "Physical Properties").

The chord-extensions were over the outer 35 percent of the semispan and increased the local wing chords by 15 percent. A model with leading-edge chord-extensions is shown mounted in the fuselage mounting block in figure 2. (As shown in figure 2, the wings were painted at intervals along the leading edge to aid in observing the motion of the models during the flutter runs.) The wings without leading-edge chordextensions had a small amount of positive camber and the leading-edge chord-extensions of models 4 to 6 accentuated the camber.

Scaling

The nondimensional mass and stiffness distributions were required to be the same for the model as for the airplane. The mass and stiffness levels for the model were obtained by specifying the scale factors for the fundamental quantities involved: length, mass, and time.

The size of the model was limited by tunnel-wall-interference effects, and on the basis of past experience the length scale factor was chosen to be

$$l = 0.03125$$
 (1)

The mass scale factor was obtained from a requirement that the mass ratio μ should be the same for the model as for the airplane, which results in

$$m = \frac{\rho_{M}}{\rho_{A}} i^{3}$$
 (2)

In order to locate the simulated sea level near the middle of the tunnel density range available at a Mach number of 1, the density ratio was $\rho_{\rm M}/\rho_{\rm A}$ = 1.97. This location of simulated sea level allows altitudes below sea level to be obtained and flutter margins to be indicated for cases where flutter does not occur above sea level.

The time scale factor was obtained from a requirement that the reduced velocity \overline{V} should be the same for the model as for the airplane, which results in

$$t = \left(\frac{V_{M}}{V_{A}}\right)^{-1} l$$

Since the Mach number is the same for the model as for the airplane, the time scale factor may be written

$$t = \left(\frac{T_{M}}{T_{A}}\right)^{-1/2} i \tag{3}$$

The static temperature for the airplane T_A is a function of altitude only, and for sea level it was taken to be $519^{\rm O}$ R. However, in the tunnel during a run, the temperature continually drops as air is expended from the reservoir and the temperatures obtained at the various flutter points during an investigation are different. A study of previous flutter data indicated that $408^{\rm O}$ R was near the average value of the static temperature that would be expected during the present runs, and this value was used to obtain the temperature ratio used in the scaling: $T_{\rm M}/T_{\rm A} = 0.786$.

A list of the pertinent wing and flow quantities and the design scale factors used is given in table II. It may be noted that the factor η is used in the scale factors for some of the quantities listed. The factor η has the value 0.76 and occurs because the stiffnesses of the models were made 76 percent of those which would result from application of the scale factors as specified (eqs. (1), (2), and (3)). The purpose of reducing the model stiffnesses was to provide a margin of safety in the application of the model fluttertest results to the airplane. Thus the design reduced velocity for the model is equal, not to that of the airplane, but to that of an airplane having stiffnesses 76 percent of those of the actual airplane.

The dynamic pressure and Mach number are quantities which are controllable during a run, whereas the temperature is not. If the dynamic pressure and Mach number are considered to be fixed and a static temperature different from the design value is obtained, both the density and velocity will be different from the values considered in the scaling. The density and velocity changes result, respectively, in values of mass ratio and reduced velocity different from the design values. However, a combination of reduced velocity and mass ratio which can be expressed in terms of the dynamic pressure

$$\frac{\overline{V}_{M}^{2}}{\mu_{M}} \propto q_{M}$$

is independent of the temperature, and this combination is exactly simulated in the runs by the expedient of interpreting the simulated altitude in terms of dynamic pressure. Thus, the scale factor in table II for dynamic pressure is used to convert the dynamic pressure for the airplane at any altitude and Mach number to the dynamic pressure for the model at the same altitude and Mach number. The dynamic pressure for the airplane is assumed to be that calculated by use of the ICAO standard atmosphere (ref. 5). It may be noted that, for a given altitude, q/M^2 is a constant.

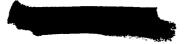
The effect of not having the mass ratio and reduced velocity of the models exactly equal to those of the airplane is believed to be negligible in the present investigation. Experience with a wide variety of flutter models has indicated that, at least within the operational limits of the tunnel, flutter at a given Mach number tends to occur at a constant value of dynamic pressure regardless of the individual values of density and velocity.

Construction

The construction of the models is indicated in figure 1. The main spar was made of aluminum alloy, and aluminum-alloy ribs having U-shaped cross sections were welded to the main spar. The leading and trailing edges were of pine. Balsa was used to fill the wing to contour. Lead weights were placed in the wing at various locations and the wings were wrapped with silk cloth and painted. Each wing panel was instrumented with strain gages on the main spar near the root. The main spar was clamped inboard of the root, as shown in figure 1, and thus allowed some root flexibility. The mounting block shown in figure 2 was made of aluminum alloy.

Physical Properties

The first several natural cantilever frequencies and node lines of each of the six wings are given in figure 3. In obtaining the data an electromagnetic shaker was used to excite each panel separately. The shaker stem acted on the extended wing spars at the locations indicated by x in figure 3 and the spars were clamped as indicated in figure 1. The positions of the node lines were indicated by salt crystals sprinkled on the wings.


The right panel of model 2, which survived the flutter tests undamaged, was used to obtain the flexibility influence coefficients. Influence coefficients were obtained at 22 stations (fig. 4) on the wing by the method described in reference 6. The influence-coefficient matrix is given in table III. This matrix has been made symmetrical in table IV by taking the average of each pair of coefficients symmetric to the diagonal. The deviation of the coefficients in table III from the average values in table IV gives some indication of the accuracy of the measurements. Only 2.6 percent of the coefficients deviate more than 2 percent, and the greatest deviation is 3.6 percent.

The right panel of model 2 was cut into strips and the center of gravity, mass, and moment of inertia about the center of gravity of each strip were measured. The data are given in figure 5. Each strip was then cut as shown in figure 4 so that each section corresponded to one of the influence coefficient stations. The mass and center of gravity of each section were measured and the values are listed in figure 4. The masses given in figures 4 and 5 for the sections and strips include an allowance for the material lost in the saw cuts.

APPARATUS AND TESTS

The investigation was made in the Langley transonic blowdown tunnel, which has a slotted test section. The test section is octagonal in cross section and measures 26 inches between flats. During the operation of the tunnel, a preselected Mach number is set by means of a variable orifice downstream of the test section, and this Mach number is held approximately constant (after the orifice is choked) while the stagnation pressure, and thus the density, is increased. The static density range is approximately 0.001 to 0.012 slug per cubic foot, and Mach numbers from subsonic values to a maximum of about 1.4 may be obtained. Because of the expansion of the air in the reservoir during a run, the stagnation temperature continually decreases, and therefore the test-section velocity is not uniquely defined by the Mach number. Additional details of the tunnel are contained in reference 1. Excellent agreement between flutter data obtained in the tunnel and in free air has been observed (ref. 7).

In the investigation, each model was cantilever-mounted in the mounting block shown in figure 2. The mounting block was fitted into a sting in such a way as to form a fuselage 3 inches in diameter which extended upstream into the subsonic flow region of the tunnel. This arrangement prevented the formation of shock waves from the fuselage nose which might reflect from the tunnel walls onto the model. A sketch of the model mounted on the sting and installed in the tunnel is shown in figure 6. The sting and model weighed approximately

290 pounds and the system had a fundamental bending frequency of about 15 cycles per second.

Wire strain gages were mounted on the wing spars near the root and were oriented so as to indicate model deflections about two different axes. The strain-gage signals, the tunnel stagnation and static pressures, and the stagnation temperature were recorded on a recording oscillograph. The strain-gage signals were used to indicate the start of flutter and the flutter frequency. High-speed motion pictures were made during some of the runs.

The wings without leading-edge chord-extensions were tested at zero angle of attack. The wings with leading-edge chord-extensions were tested at -2° angle of attack in an attempt to reduce the static loads.

RESULTS AND DISCUSSION

Presentation of Data

The results of the investigation are given in table V(a) for the wings without leading-edge chord-extensions and in table V(b) for the wings with leading-edge chord-extensions. The dynamic pressure at the various test points is plotted as a function of Mach number in figure 7 for the wings without leading-edge chord-extensions and in figure 8 for the wings with leading-edge chord-extensions. Lines of constant simulated altitude are also indicated in figures 7 and 8.

Each circle symbol in figures 7 and 8 indicates the point of the start of definite flutter and each square symbol indicates the point of the maximum dynamic pressure attained during a run without obtaining flutter. A dashed line below a symbol defines a low-damping condition. In the low-damping condition, the strain-gage records and the motion pictures indicated periods of nearly sinusoidal, lowly damped oscillations. The point for the beginning of low damping in each run was indefinite and was somewhat arbitrarily chosen. On the other hand, the point for the beginning of flutter in each run in which flutter was obtained was definite and was characterized by rapidly diverging oscillations. The low-damping region is indicated for the wings without leading-edge chord-extensions in figure 7 by dotted shading.

The response frequencies of the wings are indicated near most of the data points in figures 7 and 8. The response frequency for no-flutter or low-damping points was taken as the predominant oscillation frequency of the models; at flutter, of course, the flutter frequency is listed.

The flutter mode for both configurations investigated involved bending and torsion of the wing with some rotation in pitch at the wing root. The rotation in pitch of the wing root was possible because, as previously noted, the main spar was clamped inboard of the root. A typical oscillograph record showing the strain-gage traces during low damping and flutter is given in figure 9.

Interpretation of Results

As stated in the section entitled "Scaling," the stiffnesses of models were 76 percent of the scaled airplane stiffnesses. The simulated altitudes indicated in figures 7 and 8 are thus to be interpreted as altitudes which, if cleared by the model, could be reached with a 32-percent (1/0.76 = 1.32) margin of safety in stiffness by the airplane. This statement assumes, of course, that in all other respects the model exactly simulates the airplane.

An alternate interpretation of the results arises from the fact that for most configurations the dynamic pressure required for flutter varies, to a first approximation, directly with the stiffness level. Thus, a flutter point obtained with the model indicates that the airplane will flutter at the same Mach number at a simulated altitude corresponding to a dynamic pressure 32 percent higher than that for the model.

Wings Without Leading-Edge Chord-Extensions

The transonic flutter boundary for the models of the wing without leading-edge chord-extensions is located at altitudes below sea level (fig. 7). The dynamic pressure for flutter is indicated to be a minimum at a Mach number of about 0.87. The low-damping region extends at supersonic Mach numbers to altitudes above sea level. With regard to the airplane, the significance of the low damping obtained with the models is not known. Photographs of the wings without leading-edge chord-extensions after flutter are given in figures 10(a) to 10(c).

Wings With Leading-Edge Chord-Extensions

Because of various data-recording difficulties, the flutter points at the three lowest Mach numbers for the wings with leading-edge extensions (fig. 8) are known only to an estimated accuracy of ± 100 lb/sq ft for dynamic pressure and ± 0.03 for Mach number. However, the shape of the transonic flutter boundary is shown to be similar to that for the wings without leading-edge chord-extensions (fig. 7). Although the

flutter boundary shifted to higher altitudes with the addition of the leading-edge chord-extensions, no flutter was obtained at altitudes above sea level.

Low damping preceded the flutter points at the lowest Mach numbers, but the location of these points could not be ascertained and they are omitted in figure 8 and table V(b). A photograph of one of the wings with leading-edge chord-extensions after flutter is given in figure 10(d).

CONCLUSIONS

The transonic flutter characteristics of models of the sweptback wing of a current fighter airplane have been studied in the Langley transonic blowdown tunnel. The models were dynamically and elastically scaled in accordance with criteria which include a flutter safety margin. The scaling was such that if at a given Mach number a certain altitude is cleared by the model, that Mach number and altitude could be reached with a 32 percent margin of safety in stiffness by the airplane. The following results were obtained:

- 1. Although the flutter boundary for the wings without leadingedge chord-extensions was located at altitudes below sea level, a region of lowly damped oscillations that extended to altitudes above sea level was obtained at supersonic Mach numbers.
- 2. With the addition of 15-percent-chord leading-edge extensions over the outer 35 percent of the semispan, the flutter boundary shifted to higher altitudes but remained below sea level.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., December 20, 1957.



REFERENCES

- 1. Unangst, John R., and Jones, George W., Jr.: Some Effects of Sweep and Aspect Ratio on the Transonic Flutter Characteristics of a Series of Thin Cantilever Wings Having a Taper Ratio of 0.6.

 NACA RM L55Il3a, 1956.
- 2. Jones, George W., Jr., and Unangst, John R.: Investigation To Determine Effects of Center-of-Gravity Location on Transonic Flutter Characteristics of a 45° Sweptback Wing. NACA RM L55K30, 1956.
- 3. Ruhlin, Charles L.: Experimental Transonic Flutter Characteristics of an Untapered, 45° Sweptback, Aspect-Ratio-4 Wing. NACA RM L55L22, 1956.
- 4. Land, Norman S., and Abbott, Frank T., Jr.: Transonic Flutter Investigation of a Fighter-Airplane Wing Model and Comparison With a Systematic Plan-Form Series. NACA RM L55B16, 1955.
- 5. Anon.: Standard Atmosphere Tables and Data for Altitudes to 65,800 Feet. NACA Rep. 1235, 1955. (Supersedes NACA TN 3182.)
- 6. Jones, George W., Jr., and Young, Lou S., Jr.: Transonic Flutter Investigation of Two 64° Delta Wings With Simulated Streamwise Rib and Orthogonal Spar Construction. NACA RM L56127, 1957.
- 7. Bursnall, William J.: Initial Flutter Tests in the Langley Transonic Blowdown Tunnel and Comparison With Free-Flight Flutter Results. NACA RM L52Kl4, 1953.

TABLE I.- GEOMETRY OF MODELS WITHOUT

LEADING-EDGE CHORD-EXTENSIONS

Streamwise airfoil section, tip Modified NACA 6	55A006
Streamwise airfoil section, root Modified NACA 6	5 A 007
Leading-edge sweepback, deg	41.1
Trailing-edge sweepback, deg	19.3
Span, ft	1.252
Plan-form area based on extension of panels	
to model center line, sq ft).4582
Plan-form aspect ratio based on extension of	
panels to model center line	3.42
Fuselage diameter, ft	0.250
Exposed-panel span, ft	0.498
Exposed-panel area, sq ft	1453
Exposed-panel aspect ratio	

TABLE II.- DESIGN SCALE FACTORS OF PERTINENT WING AND FLOW QUANTITIES

$$\left[\frac{\rho_{M}}{\rho_{A}} = 1.97; \frac{T_{M}}{T_{A}} = 0.786; \eta = 0.76\right]$$

	,		
Out and the	Design scale factor		
Quantity	Symbolical	Numerical	
Fundamental quantities:			
Length	ı	0.03125	
Mass	$m = \frac{\rho_{M}}{\rho_{A}} i^{3}$	0.6012 × 10 ⁻⁴	
Time	$t = \left(\frac{T_{M}}{T_{A}}\right)^{-1/2} i$	0.03525	
Derived quantities:			
Stream velocity	lt ⁻¹	0.886	
Stream dynamic pressure	ml ⁻¹ t ⁻²	1.548	
Moment of inertia	ml ²	0.587 × 10 ⁻⁷	
Flexibility influence coefficients.	$\eta^{-1}m^{-1}t^2$	27.195	
Natural vibration frequencies	•	24.73	
Bending and torsional stiffnesses .	η ι ³ mt ⁻²	1:122 × 10 ⁻⁶	

TABLE III.- FLEXIBILITY INFLUENCE COEFFICIENTS ON RIGHT

Panel of wing 2. Units are $\frac{\text{in}}{1\text{b}} \times 10^5$

,*		• •				
	22	22 22 22 22 22 22 22 22 22 22 22 22 22				
	12	-65.1 117.2 12.3 117.2 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12				
	20	7 - 22.3 27 - 7 - 1.1 27 2 27 2 12 8 3 2 2 15 8 3 2 2 15 8 2 2 15 8 2 2 15 8 2 2 15 8 2 2 16 8 2 2 17 8 2 2 18 8 2 18				
	19	25.57 285.57 288.57 370 288.57 288.57 288.58 289.58				
	18	267 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	17	22.5 22.4 22.4 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7				
	16	22.7 2.697 1,000 1,000 1,000 1,100 1,100 1,400 1,400 1,410 1				
	15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	77	11				
	\vdash	17.84.20.82.78.83.34.15.82.83.21 				
	13	I HOO HOOMHHOOMHHOO				
oint	12	2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5				
Load point	ជ	4. 42 1. 282 1. 282				
	10	1,5,9 1,110 1,250 1,110 1,120 1,120 1,120 1,120 1,270 1,120 1,270 1,				
	6	22.7.8 22.7.8 64.9 64.9 64.9 65.5 65.5 66.9 66				
	8	2, 10 10 10 10 10 10 10 10 10 10 10 10 10				
	7	2.64.02.02.02.02.02.02.02.02.02.02.02.02.02.				
	9	8 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2				
	2	236 236 1,1,370 1,1,270 1,1,080 1,1,080 1,1,000 1,000 1,				
	4	100 100 100 100 100 100 100 100 100 100				
	100	4887884377988437888484 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	N	76.0 28.7 28.6 28.6 28.6 28.6 29.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20				
	-	85.238.28.22.20.0138.22.43.40.010.014.01.010.014.014				
Deflection point to boint to						
_	Д					

Table iv.- flexibility influence coefficients of table III after being made symmetrical. Units are $\frac{1n.}{1b}\times 10^5$

	52	3738884443884101888644 5000000100000000000000000000000000000
	เร	-64.6 164.6 164.6 167.0 177.0 187.0
	20	22.47.29.44.89.44.89.44.89.44.89.69.49.89.69.49.89.69.49.89.69.49.89.69.49.89.89.89.89.89.89.89.89.89.89.89.89.89
	19	25.3 25.3 25.3 25.3 25.3 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6
	18	1,0, 1,0, 1,0,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
	11	32.6 211, 430 11,930 11,930 11,930 11,930 11,10
	97	22.8 1,000 1,000 1,1290 1,120 1,150 1,160 1,
	15	11111111111111111111111111111111111111
	17	20179.8 28688.9 2471.2 247.2 2
	13	25.25 25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2
oint	12	61.4 -11.6 0 253 45.3 79.8 268 19.2 170 950 19.2 170 174 5.700 266 466 1,240 200 74.5 1,240 200 757 1,250 200 757
Load point	п	25.0 1,1880 1,1880 1,1880 1,19
	10	2.88 3.8 2.0 1.4 2.8 3.4 5
	. 6	23 8 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
	8	
	7	25.4 27.0 78.3 100 110 110 110 110 110 110 110
	9	88. 2,640. 11,
	2	235 235 230 230 2,0 2,0
	#	6.6 6.8 6.8 6.8 6.9 7.1 1,1
	3	6. 87. 1
	8	23.1.
	1	0
Deflection	point	10×4~~~~~00011354537586000000000000000000000000000000000000

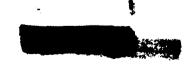


TABLE V .- COMPILATION OF TEST RESULTS

Wing	Run	Point	Panel	behavior*	. м	q, lb/sq ft	V, ft/sec	ρ, slugs/cu ft	T, o _R	Response frequency,	
			Left	Right	M					Left	Right
	(a) Wings without leading-edge chord-extensions										
1	1 2	a. {a {b	Q L Q	Q L Q	0.877 1.095 1.099	1,921 2,228 2,795	889.1 1,089.2 1,070.8	0.0048 .0038 .0049	427.8 411.8 395.1	233 260	233 250
1	3	{a b	L Q	L Q	1.312 1.317	3,264 3,924	1,243.0	.0042 .0053	373.6 354.5	2 60 2 75	260 260
1	4	∫ a b	L F	L L	1.028 1.022	3,390 3,622	1,004.7 988.1	.0067 .0074	397.5 389.0	300 310	290 310
3	5	{a b	L Q	L Q	1.211 1.218	2,821 4,118	1,174.9 1,115.3	.0041 .0067	391.8 349.0	260 300	2 65 3 00
l	6	{ a {b	X X	L Q	1.155 1.140	2,524 3,747	1,128.2 1,054.7	.0040 .0067	397.1 356.3		233 267
1	7	(a. (b	X X	L Q	1.056 1.030	2,860 3,688	1,054.1 973.4	.0051 .0078	414.7 371.7		267 270
1	8	a b	X X	L Q	•755 •758	2,435 2,794	783.2 755.6		447.8 413.5		300 300
1	9	{ a b	X X	L F	.863 .870	2,086 2,418	905.0 906.3	.0051 .0059	457.7 4 51. 6		250 262
3	10	{ a b	L F	X X	.815 .822	2,698 2,933	835.8 8 3 5.1	.0077 .0084	437.7 429.5	270 310	
2	11	(a. b	L Q	N Q	.898 .888	1,971 2,205	895.7 877.2	.0049 .0057	414.0 406.1	265 270	250
2	12	a.	Q	N	•979	2,773	946.6	.0062	389.1	280	
2	13	{ a . {b	L F	N N	.938 .942	2,683 3,154	931.2 920.7	.0062 .0074	410.2 397.6	250 300	
				(b) W:	ings w	th leadin	ng-edge o	hord-extensi	lons	<u> </u>	
6	14 15	(†) (†)	F X	L F	0.99	3,038 2,419				290	285
5	16	∫a. b	L F	X X	1.086 1.086	3,240 3,802	1,042.2	0.0060 .0074	383.3 362.8	250 300	
14	17	(†)	F	F	.890	2,010	895.4	.0050	421.3	250	250

^{*}Panel-behavior code: F - flutter; L - low damping; Q - maximum q, no flutter; X - panel damaged; N - no flutter.

 $[\]ensuremath{^{\dagger}}\textsc{Complete}$ records were not obtained on these runs. The values given are estimates based on available information.

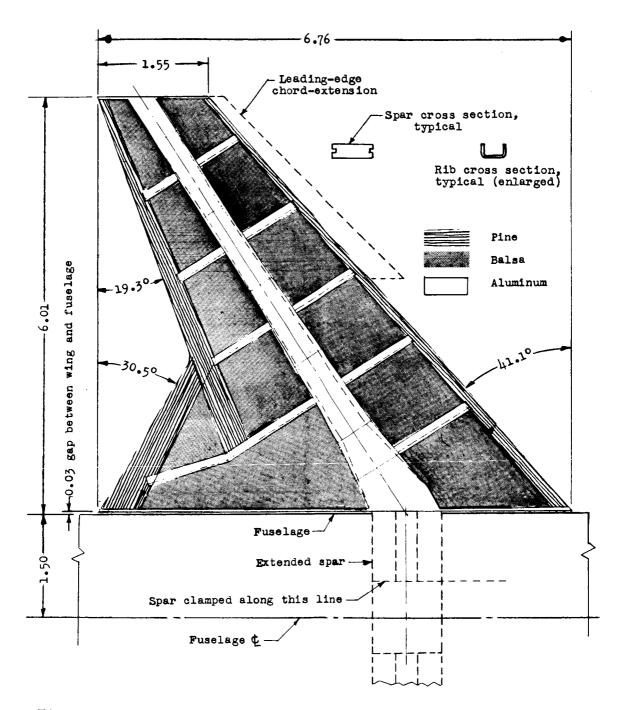
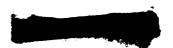
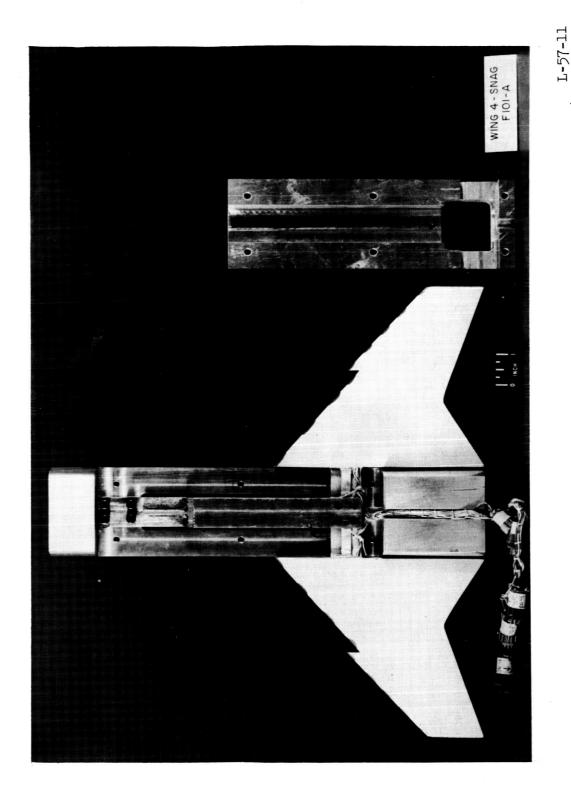
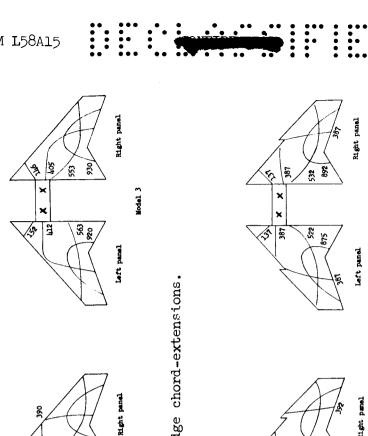





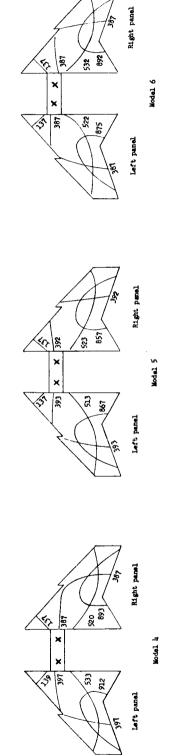
Figure 1.- Drawing of model. Lead weights are not indicated. Linear dimensions are in inches.

(Wings were Figure 2.- Photograph of wing with leading-edge chord-extensions in mounting block. painted at intervals along the leading edge.)

(a) Wings without leading-edge chord-extensions.

Model 2

Left panel


Right penel

Left panel

Model 1

935

380

(b) Wings with leading-edge chord-extensions.

indicates shaker location. Numbers beside node lines indicate frequencies in cycles per second. Symbol x Figure 3.- Measured natural vibration frequencies and node lines.

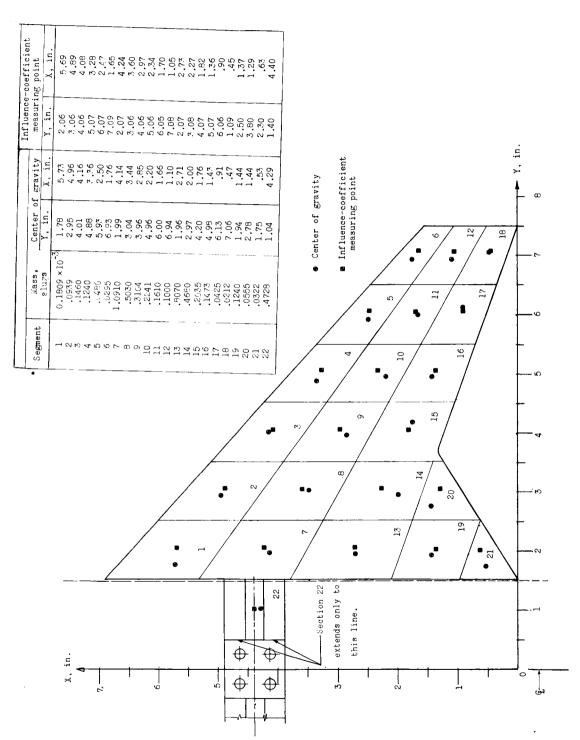
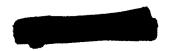



Figure 4.- Sketch of wing without leading-edge chord-extensions, showing influence-coefficient gravity of various segments. station and center of

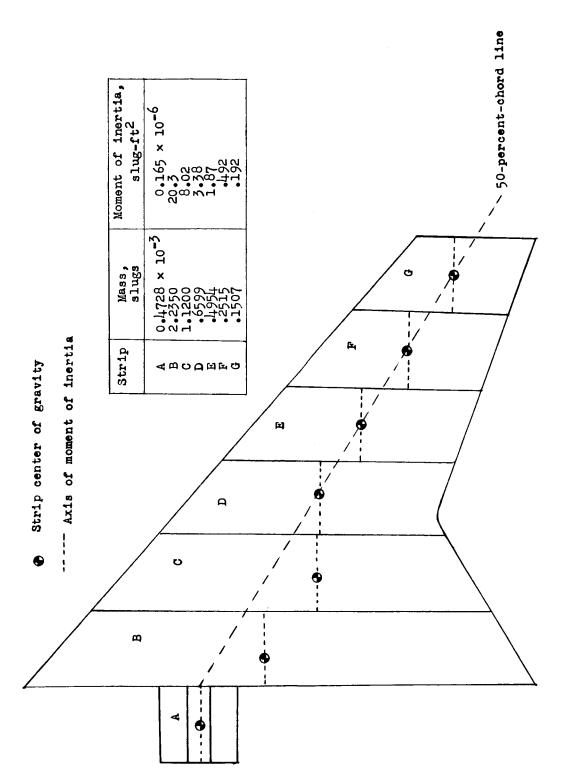
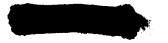



Figure 5.- Sketch of wing without leading-edge chord-extensions showing strips and strip centers of gravity.

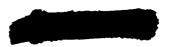



Figure 6.- Sketch of model in the Langley transonic blowdown tunnel.

O Definite start of flutter

Maximum dynamic pressure, no flutter --- Low-damping condition Low-damping region Numbers beside data points indicate

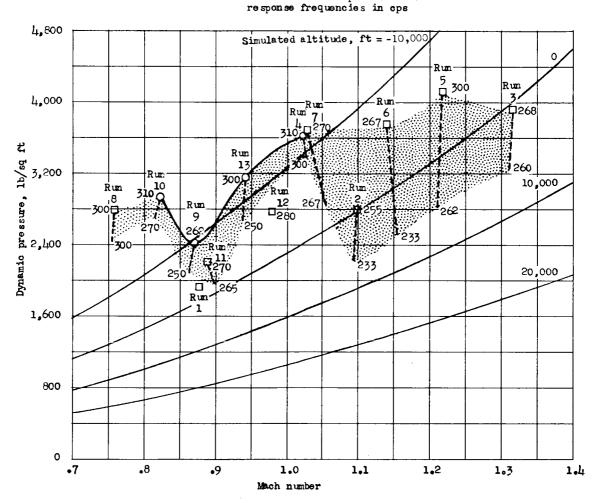
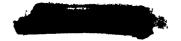



Figure 7.- Transonic flutter characteristics of wings without leadingedge chord-extensions.

O Definite start of flutter
Definite start of flutter; location
of flutter point estimated
--- Low-damping condition

Numbers beside data points indicate response frequencies in ops.

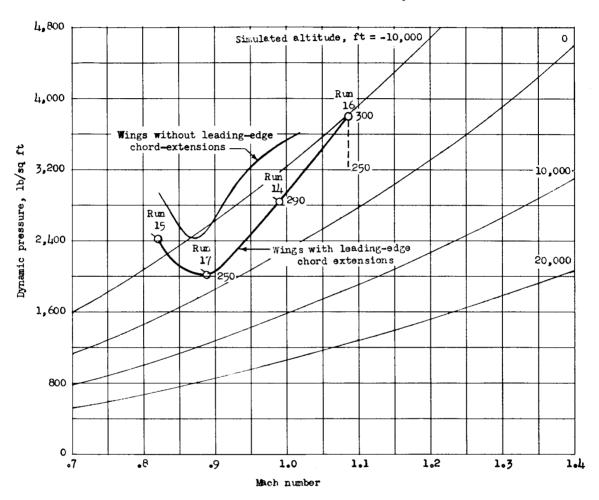
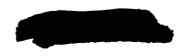
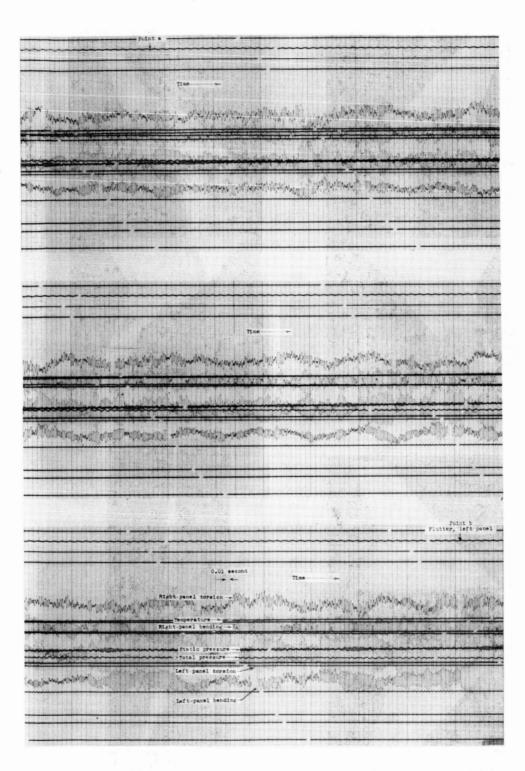
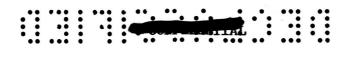
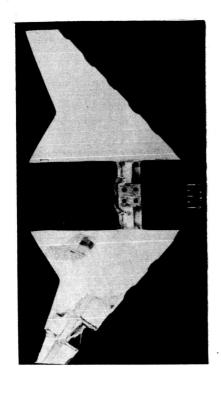
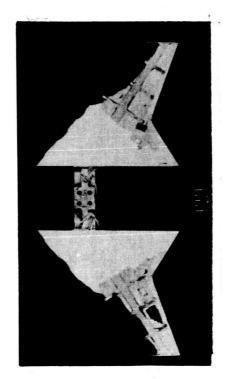




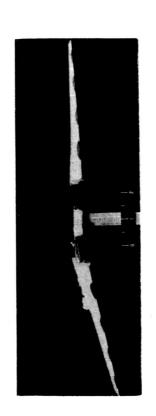
Figure 8.- Comparison of transonic flutter characteristics of wings with and without leading-edge chord-extensions. (For runs 14, 15, and 17 the accuracy of the data is less than that for the other runs, and although low-damping conditions preceded flutter, they are not indicated here.)

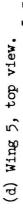


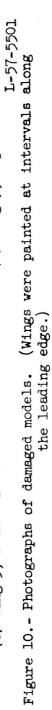


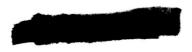
The American


Figure 9.- A typical oscillograph record (run 4, wing 1).






(b) Wing 2, bottom view.



(a) Wing 1, top view.

(c) Wing 3, front view.